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MOTIVATION

High-dimensional input data is common, e.g.

a feature :§X1 A

Input vector
with n features

&/

X

\Xn

N\

n>>m

/yi\
Yo

\ Ym

m features only

Two problems in existing dimension reduction methods:
1.How many dimensions will the input vectors be reduced, i.e. how to select

the value of m?

2.Itis hard or even impossible to interpret the physical meaning of y;’s.



TIVATION (CONT'D 1)

n our method:

A weight is associated
with each feature

Based on wj’s

N
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HIS TALK

cus on Density Mixture Clustering (Gaussian Mixture in partic
B Model:

-
p(x|©®@7) =2 ajp(x|o;)
ji=1

with

= 1 ' . T s *u:' .
- ; B -

ata Classification:

a p(x |07)

i1%,07) = —A —
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earning Problems:
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roblem 1: Estimate the model parameters ® ={0!,-,9,-}j

roblem 2: Determine the number of mixture components,
umber of clusters



IN THIS TALK (CONT'D 1)

Problem 1:

* EXxpectation-Maximization (EM) Algorithm provides a general solution
of model parameter estimation;

* An adaptive EM Algorithm (given an estimate k of k*):
* E-Step:
Fixing ®°%Y and calculate
a}old) p(Xt |9j(old))

k
z r:1ar(old) D (X, |9j(old))

- MStep Fixing h(j|x,0“?")s  we update (® using gradient ascent
method:

h(jlx,0“")= j=1,2, 5

ol (0; X,)
00

®new _ @(old) + n

|®(O|d)
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DRAWBACK OF THE EM ALGORITHM

Scenario: Traditional Expectation-Maximization (EM) algorithm
leads to a poor parameter estimation when the number k of
densities in a mixture is mis-specified;

Drawback: the Em algorithm I S oM
cannot determine the number of | R
components automatically.
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HIS TALK (CONT'D 2)

enario:

Common to cluster high-dimensional data, e.g. in Microarray data
analysis, image processing, pattern recognition.
Irrelevant features could hinder the detection of cluster structures.
Among the relevant features, some may be redundant.

lem 3: To find the minimal feature subset that best represents the
ijon of interest via learning the associated weights of the features
ties

ce of the ground-truth class labels of the training data to guide the
ion;

number of clusters is unknown a priori;

ure subset and clusters are inter-related.



THE PROPOSED APPROACH

= Develop Rival Penalized EM (RPEM) Algorithm within the learning

framework of Maximum Weighted Likelihood Approach
* To solve Problem 1 and Problem 2

* Present an unsupervised feature selection scheme
* To solve Problem 3

= Develop an Iterative Feature Selection and Clustering Algorithm
* which is an integration of RPEM and Unsupervised Feature Selection Scheme

o Highlights::

Simultaneous learning of the three tasks:

* Problem 1: Model parameter estimation;

* Problem 2: Select the number of components
(i.e. the number of clusters);

* Problem 3: The learning of the associated
feature weights w;’s.

iLs
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INTRODUCTION: THREE KINDS OF FEATURE
SELECTION APPROACHES

= Filter Approach (e.g. see [Dash et al. 2002, Miltra et al.2002])

* Perform feature selection prior to the clustering algorithm.

= Wrapper Approach (e.g. see [Dy and Brodley 2000 &2005])

* For each feature subset candidate, evaluate it by wrapping around the clustering
algorithm.
* Embedded Approach (e.g. see [Law et al. 2002, Constantinopoulos et
al. 20006])
* Optimize the two tasks in a single optimization paradigm;
* Assume that the pdf of the irrelevant features is Gaussian (Sensitive).

* Our approach
* |terate between clustering and feature selection;
* Robust against the pdf of the irrelevant features;

* Perform not only the relevance analysis, but also the redundancy analysis to
gradually shrink the search space.
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MAXIMUM WEIGHTED LIKELIHOOD AND RPEM
ALGORITHM

= A general MWL learning framework
" The ML estimate of ®* can be obtained via maximizing the cost function:

1(©) = [In p(x|®)dF (x)
with ) k
p(x|©) =2 a;p(x]6;), 2 a; Vi< j<k,a;>0

where k > k™ . The above equation can be further represented as

1(©) = IZ g(J1x,©)In p(x|O)dF (x)

where g(j|x,®) is the designable weight that satisfying

> o(ilx.0)=1

j=1
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By Baye’s formula

. X | 8.
n(ilx,0) = PO
p(x|O)
Subsequently, we have
B a’jp(xl‘gj)
PO = ) e)
Consequently, we have ’

1©)= X" 9(i1%©)Infa; p(x| 6 F ()~ [ X" a(ix.©)INh(j| xO)dF (x) (1)

Theorem 1: Suppose P(X|®) is an identifiable model with respect to ®.
Eqg.(1) reaches the global maximum if and only if ®@=@.

Particularly, as N is large enough, the empirical MWL cost function is then:
N k k

Q(XN;®)=%ZZQ(J’IXt,@))ln[a,-p(Xt |®,—)]—%ZZQ(JIXU@)|H h(J]x,0)

=1 =1 t=1 j=1
where

v),9(J[%.,©)=0 1t h(J[x,0)=0

il



Some choices of 9(j|x.9):

if 9(J1%,0)=h(j|x,06)

« Equal to the Kullback-Leibler divergence function derived from Ying-
Yang Machine with the backward architecture.

T 9(11x%.,0)=1(][x,0)

1 if
l(j|xt,®)={ |

Equal to the cost function of hard-cut EM.

j =C=argmax, ., h(J | X’[’®)
0, otherwise

A specific design of 9(J | X,,®) herein:
g(J|X,0)=20()[x,0)-h(][x,,0) (2

where @(j|x,®) is a special probability function named indicator function.
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RIVAL PENALIZED EM ALGORITHM

By considering the specific weights defined above, the cost function becomes

Q(®; Xy) =%th(®:xt)
with

G (©; Xt) = Rt(@;xt) + Ht(®; Xt)
and

Rt(®;Xt)=Z[2<0(J' | %, ©)=h(J[x,0)]In[e;p(x [ 6;)]

k

H.(©;%) =2 [2¢(j|%.,0)~h(j|x,®)]Inh(j|x,0)

j=1
One choice of ¢(]|x,,®)

j=c=argmax,. . h(j|x,®)

1 if
j1%,0)=1(j|x,0)=
?(J]%,©)=1(]|x,0) { 0, otherwise
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a maximizing the cost function Q(®;Xy) adaptively:

Al
®©Y) , and calculate h(j|x,0“")and ¢(j]|x,0), as given an inpu

A.2
g h(j|%,0°Y) s, we update ® using gradient ascent method.

exp(5;)

a. = for 1<j<k

FOY exp(B)

te ;s directly instead of «;s. As a result,

new (0] a ®;
pi = po en BE



g, (©; %) |

(new) __ p(old)
ﬂr - ﬂr + 77 aﬂr etold)

O — @O 4 aq,(0; x,) |

o low (r=c)

r

argmax,.,.., h(j|x,,©).

steps are iteratively implemented for each input until O c

d that the convergence of (& is guaranteed.




DETAILED RPEM IN GAUSSIAN DENSITY
MIXTURE MODEL

= Suppose the N inputs {)(t}t'\':1 all iid distribution, and come from a
Gaussian density mixture, i.e.,

p(x10)=> a,6(xm, 3 )

= |nitialization

Given a specifick(k > k™), we initialize (&, Then, at each time step t,
we implement the following two steps:

Step B.1:
Fixing ®°Y) | and calculate

(old) (old) (old)
a; G (x [my ’Zj )
Id
p(x, | @)

9(J [ %, 0) =2¢(] [ X,0)-N(][x ©),1< <k

h(jlx,0)=

24



Step B.2:
Fixing h(j|x,®°)s ,we update ©® using gradient ascent method.

B = B +1lg(i] %,00) - )
o

] Id —1(old) Id
my™ =mi*? +79(j 1%, 02 T -mPY) e :

o X

> =193 1%, 0°NIY M n9(i 1%, 0, 7 e

where

Ut,j b [Z;l(dd) (X[ _ mgom) )(X[ . mgold) )T Z;i(old) ]

Note that, to simplify the computation Zgls update, we have updated

* along the direction of § -2199.(®:X)§ -
Z : Z i az —jl Z j
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Initial Positions of Parameter ms In Input Space

PauNudemnrhme-m

the number k of seed points is 7 rather than 3

Pasilions of Parameter ms in Input Space
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True Input Distribution with Three Gaussian Densities Distribution of the First Three Gaussian Density Mixtures Learned by RPEM Distribution of the First Three Principal Gaussian Density Mixtures Learned by EM
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True distribution of components Results for RPEM Results for EM
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IMENT II

ata points are generated from the mixture Gaussian models, where the three ¢
verlapped.
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, the distribution of the convergent seed points
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rmance of RPEM in more clusters
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investigation of robustness of RPEM

Initial Positions of Parameter n}s in Input Space

Positions of Parameter rr,s in Input Space
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PERVISED FEATURE SELECTIO

‘All the relevant features

fot irrelevant features



ecting the relevant features

=5

=

1.5

ature X is relevant to the partitioning, while the feature Y is irr

laim: A feature is less relevant if, along this feature, the varianc
rvations in a cluster is closer to the global variance of observatio
rs.



ropose a quantitative index to measure the relevance of each feature

k OS2
SCORE, = — ZScore,l— Z(l—#),l:l,...,d
i= [

j=1

e variance of the jth cluster projected on the I dimension (local):

-, )2 %, e jrcluster,

ariance of the whole data on the Ith dimension (global):

N

_ 1 N
2. VP, u = — X (-
I N A 1 Z lu N tz=:1 |t
al case: SCORE, = 1; the worst case: SCORE, = 0.
ed relevant feature subset:

R =F —-{F,|SCORE, < B,F, € F}




= Selecting the non-redundant features
O Markov Blanket (Pearl): Given a feature F,, let M, c F(F ¢ M,)
M, is said to be the Markov Blanket for Fi if:

P(F-M,-F,C|F,,M,)=P(F-M,-F,C|M),)).

O If a Markov Blanket M| for F, can be found in the feature set F, i.e. M,
subsumes the information that F, has about C, we are able to eliminate the feature F,
from F without affecting the class prediction accuracy.

O The closeness of candidate M, to being a true Markov Blanket for F, is measured by
(Koller&Sahami):

A(F [M,) Z P(M, = fMl’FI = f,)-KL(P(C M, = fM,’FI =f)IIP(CIM, = fM,))

fM| ’fl

O where KL(.||.) denotes the Kullback-Leibler divergence:

KL(P[IQ)=2 ,P(z)log(P(z)/Q(z)).

37



Exact Markov Blanket for F:A(F|M,)=0;
Approximate Markov Blanket for F:aA(F|m,) being small.

Algorithm 1: The Markov Blanket filtering algorithm.
Initialize

- o) =

[terate
- Foreach feature F; € '™) let M, be the set of T features

Fy € U™} — F, for which the correlation between Fy and Fy are
the highest:

- Compute A(F | M) for each feature [;

- Choose the Fy_ that minimizes A(F; [M; ). and define
agimtl) _ gim) _ .

e

Until |G{m+1)| = T

non-redundant features (classes are replaced by clusters):

R ={F,_| min  A(F [M,)> 7/'Frre]Ci-5I(’l) A(F, | MI)}U{Rl_{Fll’ F..... F

F| EG(m)

where m=12,..,|R|-T,F_eR,GY =R,

IR-T
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THE ITERATIVE FEATURE SELECTION AND
CLUSTERING ALGORITHM

Algorithm 2: Iterative Feature Selection in RPEM
clustering algorithm.
Input : Xx ., kmax, 7. epochmas, 5.7, T "
output: the most relevant and non-redundant feature subser R
1 R—{F});
2 epoch_count — 0;

3 while epoch_count < epochmax do
4 for ¢t — 1 to N do

5 Step 1: Caleulate hijlxe, ©)'s to obtain gijlx:, ©)'s on
ﬁ{

6 Step 2: Update parameters © ﬂﬂéF ; Procedure FeatureSelection (F, 3 ~, 1)
= — Slold BAx,; J
Slnew) = GId) 4 IMELO)| oy input - F. 5.4.T

7 enid output: &

! Ijii_ FeatureSelection|F, 3,~+. T / SBelecting the relevant features|

9 epoch_count — epoch_count + 1; 1 Calculate SCORE, Fy £ F:

10 end ? R — F—{F|SCORE; <8,F €F};

|f",-“ Selecting the non-redundant feature s|
3 Perform Markov Blanker filtering:

. - -[F,um|n1i]1F:EQ(m) A(F M) =
v-ming ooy AFIM)}U{R —{Fy, Fy,..., F
5 R— H”;

T

IR |-T




INE

duction
he existing unsupervised feature selection methods

RPEM Algorithm
pervised Feature Selection Schemes

rative Feature Selection and Clustering Algorithm +

imental Results 4=



RIMENTAL RESULTS

system parameters

etic data 1

relevant features;
btained by duplicating F, and F,; (thus either {F5; F,} or {F; F
)

sampled from standard Gaussian, thus being unimodal (irrel
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e algorithm in (Law et al. 2004) assumes that the pdf of the irreleva
atures is Gaussian;

t be uniformly distributed (irrelevant to the clustering); The distributi
the irrelevant features is bias from the pre-specified one in (Law et
04). 6

: The algorithm in (Law et al. 2004) is sensitive to the ass
he irrelevant features;
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IRRFS-RPEM: the proposed algorithm;

IRFS-RPEM: a variant without redundancy analysis.

Data Set

Wdbc
d=30
N=569
K* =2

Sonar
d=30
N=569
k* =2

Wine
d=30
N=569
k* =2

lonosphere
d=30
N=569
kK" =2

Method

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

Model Order

mean £ std

1.7 £ 0.4
5.7+ 0.3
23+ 04
Fixed at 2

23+ 0.8
1.0+ 0.0
28t 0.6
2.7 £ 0.7

25+ 0.7
3.3+ 14
47 1.7
31+ 05

1.8 £ 0.5
32+ 0.6
26t 0.8
25+t 0.5

Error Rate
mean £ std

0.2610*+ 0.0781
0.1005 = 0.0349
0.1021 + 0.0546
0.0897 + 0.0308

0.4651 = 0.0532
0.5000 = 0.0000
0.3625 =+ 0.0394
0.3221 + 0.0333

0.0843 =+ 0.0261
0.0673 =+ 0.0286
0.0492 + 0.0182
0.0509 = 0.0248

0.4056 = 0.0121
0.2268 =+ 0.0386
0.2921 + 0.0453
0.2121 + 0.0273
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’ta Set Method

DG IRFS-RPEM
IRRFS-RPEM

IRFS-RPEM

Ear IRRFS-RPEM

Data
wdbc

sonar

— 1

Model Order
mean =std

23 £ 04
Fixed at 2

2.8 £ 0.6
2.7 £ 0.7

: The proportions of the average selected feature

IRFS-RPEM
51.16%
57%

IRRFS-RPEM
50.33%
55.83%

Error Rate

mean +std ‘

0.1021 =+ 0.0546
0.0897 = 0.0308

0.3625 + 0.0394
0.3221 + 0.0333

1



Model Order Error Rate

Data Set B mean *+std mean *+std
_|_
. IRFS-RPEM 47+ 1.7 g-gggg i g-g;jg
IRRFS-RPEM 31+ 05 ' s
B e I'RRRFFSS'BRPPEE'\I’\'A 26+ 0.8 0.2921 + 0.0453
P 25 4+ 0.5 0.2121 =+ 0.0273

Table: The proportions of the average selected features

Data IRFS-RPEM IRRFS-RPEM
wine 83.65% 62.31%
lonosphere 68.13% 34.38%
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Data Set Method Model Order Error Rate

mean = std mean std
. GMCIusFW 5.7 + 0.3 0.1005 % 0.0349
IRRFS-RPEM Fixed at 2 0.0897 = 0.0308
. ISQ/IFg—URSIfI;/K/I 1.0 + 0.0 0.5000 % 0.0000
2.7 £ 0.7 0.3221 =+ 0.0333
p IF?Q/IFC;—URSFI’:I;/K/I 33+ 14 0.0673 #+ 0.0286
31 +05 0.0509 + 0.0248
. IF?Q/'F%'_‘;{SPFE’KA 32+ 0.6 0.2268 + 0.0386
> 2.5+ 05 0.2121 & 0.0273



CLUSION

evelop RPEM algorithm from the MWL learning framework;
new feature relevance measurement index is proposed,;

e algorithm iterates between the clustering and feature
lection, featuring that:
It does not particularly assume the pdf for the irrelevant features;
ffective in eliminating both irrelevant and redundant features;



Thanks!

Q&A
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