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MOTIVATION

High-dimensional input data is common, e.g. 
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m features only

Two problems in existing dimension reduction methods:
1.How many dimensions will the input vectors be reduced, i.e.  how to select 
the value of m?
2.It is hard or even impossible to interpret the physical meaning of yj’s. 
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n >> m



MOTIVATION (CONT’D 1)
 In our method:
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1Based on wj’s

A weight is associated 
with each feature
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where   ]1,0[iw

A Learning 
Algorithm

Learn wj’s
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IN THIS TALK

 Focus on Density Mixture Clustering (Gaussian Mixture in particlar)
Model:

 Two Learning Problems:
 Problem 1: Estimate the model parameters                              
 Problem 2: Determine the number of mixture components, i.e. the 

number of clusters

*

* * *

1
( | ) ( | )

k

j j
j

p x p x 


  
with

*

*

1
1 ,

k

j
j




 * *1 , 0 .jj k    

** * *
1{ , }k

j j j   

Data Classification:

*

* *
* *

* *
1

( | )
( | , ) , 1 .

( | )
j t j

t k
r t jr

p x
h j x j k

p x

 

 


   


9



IN THIS TALK (CONT’D 1)

 Problem 1:
• Expectation-Maximization (EM) Algorithm provides a general solution 

of model parameter estimation;
• An adaptive EM Algorithm (given an estimate k of k*):

• E-Step:
Fixing            and calculate   
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• M-Step    Fixing                         , we update         using gradient ascent
method:
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DRAWBACK OF THE EM ALGORITHM

 Scenario: Traditional Expectation-Maximization (EM) algorithm 
leads to a poor parameter estimation when the number k of 
densities in a mixture is mis-specified;
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Drawback: The EM algorithm 
cannot determine the number of 
components automatically.



IN THIS TALK (CONT’D 2)
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Scenario:
• Common to cluster high-dimensional data, e.g. in Microarray data 

analysis, image processing, pattern recognition.
• Irrelevant features could hinder the detection of cluster structures.
• Among the relevant features, some may be redundant. 

 Problem 3: To find the minimal feature subset that best represents the 
partition of interest via learning the associated weights of the features

 Difficulties
• Absence of the ground-truth class labels of the training data to guide the feature 

selection;
• True number of clusters is unknown a priori;
• Feature subset and clusters are inter-related. 



THE PROPOSED APPROACH
 Develop Rival Penalized EM (RPEM) Algorithm within the learning 

framework of Maximum Weighted Likelihood Approach
• To solve Problem 1 and Problem 2

 Present an unsupervised feature selection scheme
• To solve Problem 3

 Develop an Iterative Feature Selection and Clustering Algorithm
• which is an integration of RPEM and Unsupervised Feature Selection Scheme

• Highlights:
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Simultaneous learning of the three tasks:
• Problem 1: Model parameter estimation;
• Problem 2: Select the number of components

(i.e. the number of clusters);
• Problem 3: The learning of the associated 

feature weights wj’s.
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OUTLINE

 Introduction 
• The existing unsupervised feature selection methods

 The RPEM Algorithm
 Unsupervised Feature Selection Schemes
 The Iterative Feature Selection and Clustering Algorithm
 Experimental Results
 Conclusion
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INTRODUCTION: THREE KINDS OF FEATURE 
SELECTION APPROACHES

 Filter Approach (e.g. see [Dash et al. 2002, Miltra et al.2002])
• Perform feature selection prior to the clustering algorithm.

 Wrapper Approach (e.g. see [Dy and Brodley 2000 &2005])
• For each feature subset candidate, evaluate it by wrapping around the clustering 

algorithm.

 Embedded Approach (e.g. see [Law et al. 2002, Constantinopoulos et 
al. 2006])
• Optimize the two tasks in a single optimization paradigm;
• Assume that the pdf of the irrelevant features is Gaussian (Sensitive).

 Our approach
• Iterate between clustering and feature selection;
• Robust against the pdf of the irrelevant features;
• Perform not only the relevance analysis, but also the redundancy analysis to 

gradually shrink the search space.
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MAXIMUM WEIGHTED LIKELIHOOD AND RPEM 
ALGORITHM
 A general MWL learning framework
 The ML estimate of         can be obtained via maximizing the cost function:

with

where              . The above equation can be further represented as

where                     is the designable weight that satisfying
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By Baye’s formula

Subsequently, we have

Consequently, we have

(1)

Theorem 1: Suppose                    is an identifiable model with respect to
Eq.(1) reaches the global maximum if and only if
Particularly, as N is large enough, the empirical MWL cost function is then:

where
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Some choices of                 :

 If 
• Equal to the Kullback-Leibler divergence function derived from Ying-

Yang Machine with the backward architecture.

 If

• Equal to the cost function of hard-cut EM.

 A specific design of                          herein:
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RIVAL PENALIZED EM ALGORITHM

By considering the specific weights defined above, the cost function becomes

with

and

One choice of
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Learn      via maximizing the cost function                   adaptively:
 Step A.1

Fixing             , and calculate                          and                    , as given an input

 Step A.2
Fixing                          s, we update        using gradient ascent method.

and update          directly instead of        . As a result,
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meanwhile

where
The above two steps are iteratively implemented for each input until       converges.

Remarks:
We have proved that the convergence of        is guaranteed.
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DETAILED RPEM IN GAUSSIAN DENSITY 
MIXTURE MODEL

 Suppose the N inputs              all iid distribution, and come from a 
Gaussian density mixture, i.e.,

 Initialization
Given a specific                    we initialize        Then, at each time step t, 

we implement the following two steps:   
Step B.1:

Fixing            , and calculate
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Step B.2:
Fixing                         ,we update      using gradient ascent method.

where

Note that, to simplify the computation          update, we have updated
along the direction of
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EXPERIMENTAL SIMULATION
EXPERIMENT I

The number k of seed points is 3

Initial random seed points Change of Q

Results of RPEM Results of EM 26



Suppose the number k of seed points is 7 rather than 3

Initial seed points Results for RPEM Results for EM

Learning curve for RPEM Learning curve for EM
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True distribution of components Results for RPEM Results for EM
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EXPERIMENT II
The data points are generated from the mixture Gaussian models, where the three clusters 
are overlapped.
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Initial seed points Results for RPEM Results for EM

Learning curve for RPEM Learning curve for EM



For k = 25, the distribution of the convergent seed points

Initial seed points Results for RPEM Results for EM

Learning curve for RPEM Learning curve for EM
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The performance of RPEM in more clusters
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Empirical investigation of robustness of RPEM
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UNSUPERVISED FEATURE SELECTION
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 Selecting the relevant features

• The feature X is relevant to the partitioning, while the feature Y is irrelevant.
• Our Claim: A feature is less relevant if, along this feature, the variance of 

observations in a cluster is closer to the global variance of observations in all 
clusters.
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We propose a quantitative index to measure the relevance of each feature:

: the variance of the jth cluster projected on the lth dimension (local):

: the variance of the whole data on the lth dimension (global):

 the optimal case: SCOREl = 1; the worst case: SCOREl = 0.
 the refined relevant feature subset:
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 Selecting the non-redundant features
o Markov Blanket (Pearl): Given a feature Fl , let                                    , 

is said to be the Markov Blanket for Fl if:

o If a Markov Blanket        for Fl can be found in the feature set F, i.e.                    
subsumes the information that Fl has about C, we are able to eliminate the feature Fl
from F without affecting the class prediction accuracy.

o The closeness of candidate      to being a true Markov Blanket for Fl is measured by 
(Koller&Sahami):

o where                  denotes the Kullback-Leibler divergence:
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 Exact Markov Blanket for
 Approximate Markov Blanket for                 being small.

 non-redundant features (classes are replaced by clusters):

where 
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THE ITERATIVE FEATURE SELECTION AND 
CLUSTERING ALGORITHM
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EXPERIMENTAL RESULTS
 The system parameters

 Synthetic data 1

o F1 and F2 are relevant features;
o F3; F4 are obtained by duplicating F1 and F2; (thus either {F3; F4} or {F1; F2} are 

redundant.)
o F5 -F10 were sampled from standard Gaussian, thus being unimodal (irrelevant to the 

clustering);

parameter kmax β γ T

value 10 0.4 2 2
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epoch ranking selected features

1
0.9(F1) 0.9(F4) 0.9(F3) 0.9(F2) 0.3(F6) 0.3(F7) 0.2(F10) 0.1(F8) 0.1(F5) 0.1(F9) {F1; F2; F3; F4}

0(F1)  0(F2) {F3; F4}

15
0.8(F1) 0.8(F2) 0.8(F4) 0.8(F3) 0.2(F7) 0.2(F8) 0.2(F6) 0.2(F10) 0.2(F5) 0.1(F9) {F1; F2; F3; F4}

0(F1)  0(F2) {F3; F4}

50
0.9(F2) 0.9(F1) 0.9(F4) 0.9(F3) 0.0(F7) 0.0(F5) 0.0(F8) 0.0(F9) 0.0(F10) 0.0(F6) {F1; F2; F3; F4}

0(F1)  0(F2) {F3; F4}
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 The algorithm in (Law et al. 2004) assumes that the pdf of the irrelevant 
features is Gaussian;

 Let  be uniformly distributed (irrelevant to the clustering); The distribution 
of the irrelevant features is bias from the pre-specified one in (Law et al. 
2004).

 Remark: The algorithm in (Law et al. 2004) is sensitive to the assumed 
pdf for the irrelevant features;
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epoch ranking selected features

1
0.9(F1) 0.9(F2) 0.9(F3) 0.9(F4) 0.3(F6) 0.3(F5) 0.2(F9) 0.2(F8) 0.1(F10) 0.1(F7) {F1; F2; F3; F4}

0(F1)  0(F2) {F3; F4}

7
0.6(F1) 0.6(F4) 0.6(F2) 0.6(F3) 0.2(F8) 0.1(F6) 0.1(F10) 0.1(F7) 0.0(F5) 0.0(F9) {F1; F2; F3; F4}

0(F1)  0(F2) {F3; F4}

50
0.9(F1) 0.9(F2) 0.9(F3) 0.9(F4) 0.0(F10) 0.0(F8) 0.0(F9) 0.0(F7) 0.0(F5) 0.0(F6) {F1; F2; F3; F4}

0(F1)  0(F2) {F3; F4}
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IRRFS-RPEM: the proposed algorithm;
IRFS-RPEM: a variant without redundancy analysis.

Data Set Method
Model Order

mean   ± std
Error Rate

mean    ± std

Wdbc
d=30

N=569
k* =2

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

1.7 ± 0.4
5.7 ± 0.3
2.3 ± 0.4
Fixed at 2

0.2610± 0.0781
0.1005 ± 0.0349
0.1021 ± 0.0546
0.0897 ± 0.0308

Sonar
d=30

N=569
k* =2

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

2.3 ± 0.8
1.0± 0.0
2.8± 0.6
2.7 ± 0.7

0.4651 ± 0.0532
0.5000  ± 0.0000
0.3625 ± 0.0394
0.3221 ± 0.0333

Wine
d=30

N=569
k* =2

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

2.5± 0.7
3.3± 1.4
4.7 ± 1.7
3.1 ± 0.5

0.0843 ± 0.0261
0.0673 ± 0.0286
0.0492 ± 0.0182
0.0509 ± 0.0248

Ionosphere
d=30

N=569
k* =2

RPEM
GMClusFW
IRFS-RPEM

IRRFS-RPEM

1.8 ± 0.5
3.2 ± 0.6
2.6± 0.8
2.5± 0.5

0.4056 ± 0.0121
0.2268 ± 0.0386
0.2921 ± 0.0453
0.2121 ± 0.0273
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Table: The proportions of the average selected features

Data Set Method
Model Order
mean  ±std

Error Rate
mean  ±std

wdbc
IRFS-RPEM

IRRFS-RPEM
2.3 ± 0.4
Fixed at 2

0.1021 ± 0.0546
0.0897 ± 0.0308

sonar
IRFS-RPEM

IRRFS-RPEM
2.8 ± 0.6
2.7 ± 0.7

0.3625 ± 0.0394
0.3221  ± 0.0333

Data IRFS-RPEM IRRFS-RPEM

wdbc 51.16% 50.33%

sonar 57% 55.83%
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Table: The proportions of the average selected features

Data Set Method
Model Order
mean  ±std

Error Rate
mean  ±std

wine
IRFS-RPEM

IRRFS-RPEM
4.7 ± 1.7
3.1 ± 0.5

0.0492 ± 0.0182
0.0509 ± 0.0248

ionosphere
IRFS-RPEM

IRRFS-RPEM
2.6 ± 0.8
2.5 ± 0.5

0.2921 ± 0.0453
0.2121 ± 0.0273

Data IRFS-RPEM IRRFS-RPEM

wine 83.65% 62.31%

ionosphere 68.13% 34.38%
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Data Set Method
Model Order
mean  ± std

Error Rate
mean  std

wdbc
GMClusFW

IRRFS-RPEM
5.7 ± 0.3
Fixed at 2

0.1005 ± 0.0349
0.0897 ± 0.0308

sonar
GMClusFW

IRRFS-RPEM
1.0 ± 0.0
2.7  ± 0.7

0.5000 ± 0.0000
0.3221  ± 0.0333

wine
GMClusFW

IRRFS-RPEM
3.3 ± 1.4
3.1 ± 0.5

0.0673 ± 0.0286
0.0509 ± 0.0248

ionosphere
GMClusFW

IRRFS-RPEM
3.2 ± 0.6
2.5 ± 0.5

0.2268 ± 0.0386
0.2121 ± 0.0273
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CONCLUSION

 Develop RPEM algorithm from the MWL learning framework;
 A new feature relevance measurement index is proposed;
 The algorithm iterates between the clustering and feature 

selection, featuring that:
• It does not particularly assume the pdf for the irrelevant features;
• Effective in eliminating both irrelevant and redundant features;
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Thanks!

Q&A
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