A NEW DIMENSION REDUCTION METHOD? — FEATURE SELECTION IN GAUSSIAN MIXTURE CLUSTERING

YIU-MING CHEUNG (张晓明)

DEPARTMENT OF COMPUTER SCIENCE HONG KONG BAPTIST UNIVERSITY, HONG KONG

ABOUT HKBU

ABOUT HK BAPTIST UNIVERSITY 关于香港浸会大学

- Established in 1956 the 2nd longest history in HK 于1956年成立-是香港第二间历史悠久的大学。
- Funded by the Government 由香港政府资助
- 35 undergraduate and 58 postgraduate programmes
 共有35个本科专业和58个研究生专业
- About 8,500 students
 - 约有8,500个学生

ABOUT HK BAPTIST UNIVERSITY

关于香港浸会大学

University 大学	2010 World Ranking 2010年世界大学排名
Peking University 北京大学	37
University of Science and Technology of China 中国科技大学	49
Tsinghua University 清华大学	58
Hong Kong Baptist University 香港浸会大学	III.
Nanjing University 南京大学	120
Sun Yat-Sen University 中山大学	171
Zhejiang University 浙江大学	197

Reference: Times Higher Education – 2010 World University Ranking 参考资料: 〈英国泰晤士报高等报育〉2010年世界大学排名榜

University 大学	2011 Asia Ranking 2011年亚洲大学排名
Peking University 北京大学	3
Tsinghua University 清华大学	8
University of Science and Technology of China 中国科技大学	19
Fudan University 复旦大学	25
Nanjing University 南京大学	32
Hong Kong Baptist University 香港浸会大学	36
Sun Yat-Sen University 中山大学	39
Shanghai Jiaotong University 上海交通大学	46
Zhejiang University 浙江大学	49

Reference: Times Higher Education – 2011 World University Ranking 参考资料: 〈英国泰晤士报高等报育〉2011年世界大学排名榜

ABOUT COMPUTER SCIENCE DEPARTMENT, HKBU

In Research Assessment Exercise conducted by UGC of the HKSAR Government in 2006, ranking of the local CS/IT Departments:

根据香港政府2006年对香港本地大学所做的研究评估报告

MOTIVATION

High-dimensional input data is common, e.g.

Two problems in existing dimension reduction methods:

1. How many dimensions will the input vectors be reduced, i.e. how to select the value of m?

2. It is hard or even impossible to interpret the physical meaning of y_i 's.

MOTIVATION (CONT'D 1)

In our method:

IN THIS TALK

- Focus on Density Mixture Clustering (Gaussian Mixture in particlar)
 - Model:

$$p(x | \Theta^{*}) = \sum_{j=1}^{k^{*}} \alpha_{j}^{*} p(x | \theta_{j}^{*})$$

with

$$\sum_{j=1}^{k^{*}} \alpha_{j}^{*} = 1, \forall 1 \leq j \leq k^{*}, \alpha_{j}^{*} > 0.$$

Data Classification:

$$h(j \mid x_{t}, \Theta^{*}) = \frac{\alpha_{j}^{*} p(x_{t} \mid \theta_{j}^{*})}{\sum_{r=1}^{k^{*}} \alpha_{r}^{*} p(x_{t} \mid \theta_{j}^{*})}, 1 \le j \le k^{*}.$$

- Two Learning Problems:
 - Problem 1: Estimate the model parameters $\Theta^* = \{\alpha_j^*, \theta_j^*\}_{j=1}^{k^*}$
 - Problem 2: Determine the number of mixture components, i.e. the number of clusters

IN THIS TALK (CONT'D 1)

Problem 1:

- Expectation-Maximization (EM) Algorithm provides a general solution of model parameter estimation;
- An adaptive EM Algorithm (given an estimate k of k*):
 - E-Step:

Fixing $\Theta^{(old)}$ and calculate

$$h(j \mid x_{t}, \Theta^{(old)}) = \frac{\alpha_{j}^{(old)} p(x_{t} \mid \theta_{j}^{(old)})}{\sum_{r=1}^{k} \alpha_{r}^{(old)} p(x_{t} \mid \theta_{j}^{(old)})} \qquad j = 1, 2, \dots, k$$

• M-Step Fixing $h(j | x_t, \Theta^{(old)})s$, we update Θ using gradient ascent method:

$$\Theta^{new} = \Theta^{(old)} + \eta \frac{\partial \ell(\Theta; x_t)}{\partial \Theta} \big|_{\Theta^{(old)}}$$

DRAWBACK OF THE EM ALGORITHM

 Scenario: Traditional Expectation-Maximization (EM) algorithm leads to a poor parameter estimation when the number k of densities in a mixture is mis-specified;

Drawback: The EM algorithm cannot determine the number of components automatically.

IN THIS TALK (CONT'D 2)

Scenario:

- Common to cluster high-dimensional data, e.g. in Microarray data analysis, image processing, pattern recognition.
- Irrelevant features could hinder the detection of cluster structures.
- Among the relevant features, some may be redundant.
- Problem 3: To find the minimal feature subset that best represents the partition of interest via learning the associated weights of the features
- Difficulties
 - Absence of the ground-truth class labels of the training data to guide the feature selection;
 - True number of clusters is unknown a priori;
 - Feature subset and clusters are inter-related.

THE PROPOSED APPROACH

- Develop Rival Penalized EM (RPEM) Algorithm within the learning framework of Maximum Weighted Likelihood Approach
 - To solve Problem 1 and Problem 2
- Present an unsupervised feature selection scheme
 - To solve Problem 3
- Develop an Iterative Feature Selection and Clustering Algorithm
 - which is an integration of RPEM and Unsupervised Feature Selection Scheme
 - Highlights:

Simultaneous learning of the three tasks:

- Problem 1: Model parameter estimation;
- Problem 2: Select the number of components (i.e. the number of clusters);
- Problem 3: The learning of the associated feature weights w_i's.

OUTLINE

Introduction

- The existing unsupervised feature selection methods
- The RPEM Algorithm
- Unsupervised Feature Selection Schemes
- The Iterative Feature Selection and Clustering Algorithm
- Experimental Results
- Conclusion

INTRODUCTION: THREE KINDS OF FEATURE SELECTION APPROACHES

- Filter Approach (e.g. see [Dash et al. 2002, Miltra et al.2002])
 - Perform feature selection prior to the clustering algorithm.
- Wrapper Approach (e.g. see [Dy and Brodley 2000 & 2005])
 - For each feature subset candidate, evaluate it by wrapping around the clustering algorithm.
- Embedded Approach (e.g. see [Law et al. 2002, Constantinopoulos et al. 2006])
 - Optimize the two tasks in a single optimization paradigm;
 - Assume that the pdf of the irrelevant features is Gaussian (Sensitive).
- Our approach
 - Iterate between clustering and feature selection;
 - Robust against the pdf of the irrelevant features;
 - Perform not only the relevance analysis, but also the redundancy analysis to gradually shrink the search space.

OUTLINE

- Introduction $\sqrt{}$

The existing unsupervised feature selection methods

The RPEM Algorithm (

- Unsupervised Feature Selection Schemes
- The Iterative Feature Selection and Clustering Algorithm
- Experimental Results
- Conclusion

MAXIMUM WEIGHTED LIKELIHOOD AND RPEM ALGORITHM

- A general MWL learning framework
- The ML estimate of Θ^* can be obtained via maximizing the cost function:

$$l(\Theta) = \int \ln p(x \mid \Theta) dF(x)$$

with

$$p(x \mid \Theta) = \sum_{j=1}^{k} \alpha_{j} p(x \mid \theta_{j}), \sum_{j=1}^{k} \alpha_{j}, \forall 1 \le j \le k, \alpha_{j} > 0$$

where $k \ge k^*$. The above equation can be further represented as

$$l(\Theta) = \int \sum_{j=1}^{k} g(j \mid x, \Theta) \ln p(x \mid \Theta) dF(x)$$

where $g(j | x, \Theta)$ is the designable weight that satisfying

$$\sum_{j=1}^{k} g(j \mid x, \Theta) = 1$$

By Baye's formula

$$h(j \mid x, \Theta) = \frac{\alpha_j p(x \mid \theta_j)}{p(x \mid \Theta)}$$

Subsequently, we have

$$p(x \mid \Theta) = \frac{\alpha_{j} p(x \mid \theta_{j})}{h(j \mid x, \Theta)}$$

Consequently, we have

$$l(\Theta) = \int \sum_{j=1}^{k} g(j \mid x, \Theta) \ln \left[\alpha_{j} p(x \mid \theta_{j}) \right] dF(x) - \int \sum_{j=1}^{k} g(j \mid x, \Theta) \ln h(j \mid x, \Theta) dF(x)$$
(1)

Theorem 1: Suppose $p(x | \Theta)$ is an identifiable model with respect to Θ . Eq.(1) reaches the global maximum if and only if $\Theta = \Theta^*$. Particularly, as N is large enough, the empirical MWL cost function is then:

$$Q(X_{N};\Theta) = \frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{k} g(j \mid x_{t},\Theta) \ln[\alpha_{j} p(x_{t} \mid \Theta_{j})] - \frac{1}{N} \sum_{t=1}^{N} \sum_{j=1}^{k} g(j \mid x_{t},\Theta) \ln h(j \mid x_{t},\Theta)$$

where

 $\forall j, g(j \mid x_t, \Theta) = 0 \quad if \quad h(j \mid x_t, \Theta) = 0$

Some choices of $g(j | x_t, \Theta)$:

• If $g(j | x_t, \Theta) = h(j | x_t, \Theta)$

• Equal to the Kullback-Leibler divergence function derived from Ying-Yang Machine with the backward architecture.

• If
$$g(j | x_t, \Theta) = I(j | x_t, \Theta)$$

$$I(j | x_t, \Theta) = \begin{cases} 1 & if \quad j = c = \arg \max_{1 \le r \le k} h(j | x_t, \Theta) \\ 0, & otherwise \end{cases}$$

• Equal to the cost function of hard-cut EM.

• A specific design of $g(j | x_t, \Theta)$ herein:

$$g(j \mid x_t, \Theta) = 2\varphi(j \mid x_t, \Theta) - h(j \mid x_t, \Theta)$$
(2)

where $\varphi(j | x_t, \Theta)$ is a special probability function named indicator function.

RIVAL PENALIZED EM ALGORITHM

By considering the specific weights defined above, the cost function becomes

 $Q(\Theta; X_N) = \frac{1}{N} \sum_{t=1}^{N} q_t(\Theta; x_t)$

with

$$q_t(\Theta; x_t) = R_{t(\Theta; x_t)} + H_t(\Theta; x_t)$$

and

$$R_t(\Theta; x_t) = \sum_{j=1}^{k} [2\varphi(j \mid x_t, \Theta) - h(j \mid x_t, \Theta)] \ln[\alpha_j p(x_t \mid \theta_j)]$$

$$H_t(\Theta; x_t) = -\sum_{j=1}^{\infty} [2\varphi(j \mid x_t, \Theta) - h(j \mid x_t, \Theta)] \ln h(j \mid x_t, \Theta)$$

One choice of $\varphi(j | x_t, \Theta)$

$$\varphi(j \mid x_t, \Theta) = I(j \mid x_t, \Theta) = \begin{cases} 1 & \text{if } j = c = \arg \max_{1 \le r \le k} h(j \mid x_t, \Theta) \\ 0, \text{ otherwise} \end{cases}$$

Learn Θ via maximizing the cost function $Q(\Theta; X_N)$ adaptively:

Step A.1

Fixing $\Theta^{(old)}$, and calculate $h(j | x_t, \Theta^{(old)})$ and $\varphi(j | x_t, \Theta)$, as given an input x_t

Step A.2

Fixing $h(j|x_t, \Theta^{(old)})$ s, we update Θ using gradient ascent method.

$$\alpha_j = \frac{\exp(\beta_j)}{\sum_{r=1}^k \exp(\beta_r)} \quad for \quad 1 \le j \le k$$

and update $\beta_j s$ directly instead of $\alpha_j s$. As a result,

$$\beta_{c}^{(new)} = \beta_{c}^{(old)} + \eta \frac{\partial q_{t}(\Theta; x_{t})}{\partial \beta_{c}}|_{\Theta^{(old)}}$$

$$\Theta_{c}^{(new)} = \Theta_{c}^{(old)} + \eta \frac{\partial q_{t}(\Theta; x_{t})}{\partial \Theta_{c}} \big|_{\Theta_{c}^{(old)}}$$

meanwhile

$$\beta_r^{(new)} = \beta_r^{(old)} + \eta \frac{\partial q_t(\Theta; x_t)}{\partial \beta_r} |_{\Theta^{(old)}}$$

$$\Theta_{r}^{(new)} = \Theta_{r}^{(old)} + \eta \frac{\partial q_{t}(\Theta; x_{t})}{\partial \Theta_{r}} \big|_{\Theta_{r}^{(old)}}, (r \neq c)$$

where $c = \arg \max_{1 \le r \le k} h(j \mid x_t, \Theta).$

The above two steps are iteratively implemented for each input until Θ converges.

Remarks:

We have proved that the convergence of Θ is guaranteed.

DETAILED RPEM IN GAUSSIAN DENSITY MIXTURE MODEL

Suppose the N inputs $\{x_t\}_{t=1}^N$ all iid distribution, and come from a Gaussian density mixture, i.e.,

$$p(x \mid \Theta) = \sum_{j=1}^{k} \alpha_{j} G(x_{t} m_{j}, \sum_{j})$$

Initialization

Given a specific $k (k \ge k^*)$, we initialize Θ . Then, at each time step t, we implement the following two steps:

Step B.1:

Fixing $\Theta^{(old)}$, and calculate

$$h(j \mid x_t, \Theta^{(old)}) = \frac{\alpha_j^{(old)} G(x_t \mid m_j^{(old)}, \sum_j^{(old)})}{p(x_t \mid \Theta^{(old)})}$$

$$g(j \mid x_t, \Theta) = 2\varphi(j \mid x_t, \Theta) - h(j \mid x_t, \Theta), 1 \le j \le k$$

Step B.2:
Fixing
$$h(j|x_t, \Theta^{(old)})s$$
, we update Θ using gradient ascent method.

$$\beta_j^{(new)} = \beta_j^{(old)} + \eta[g(j|x_t, \Theta^{(old)}) - \alpha_j^{old}]$$

$$m_j^{(new)} = m_j^{(old)} + \eta g(j|x_t, \Theta^{(old)}) \sum_j^{-1(old)} (x_t - m_j^{(old)})$$

$$m_1(i.e. m_o) * m_2$$

$$\sum_j^{-1(new)} = [1 + \eta g(j|x_t, \Theta^{(old)})] \sum_j^{-1(old)} - \eta g(j|x_t, \Theta^{(old)}) U_{t,j} * m_3(i.e. m_i)$$

where

$$U_{t,j} = \left[\sum_{j}^{-1(old)} (x_t - m_j^{(old)})(x_t - m_j^{(old)})^T \sum_{j}^{-1(old)}\right].$$

Note that, to simplify the computation $\sum_{j}^{-1} s$ update, we have updated $\sum_{j}^{-1} a$ long the direction of $\sum_{j}^{-1} \frac{\partial q_{i}(\Theta; x_{i})}{\partial \sum_{j}^{-1}} \sum_{j}^{-1} \frac{\partial q_{j}(\Theta; x_{i})}{\partial \sum_{j}^{-1}} \sum_{j}^{-1}$

EXPERIMENTAL SIMULATION EXPERIMENT I

The number k of seed points is 3

Suppose the number k of seed points is 7 rather than 3

True distribution of components

Results for RPEM

Results for EM

EXPERIMENT II

The data points are generated from the mixture Gaussian models, where the three clusters are overlapped.

For k = 25, the distribution of the convergent seed points

The performance of RPEM in more clusters

Learning Curve of Parameter $\alpha_i s$

Empirical investigation of robustness of RPEM

OUTLINE

- Introduction $\sqrt{}$

- The existing unsupervised feature selection methods
- The RPEM Algorithm $\sqrt{}$
- Unsupervised Feature Selection Schemes (
- The Iterative Feature Selection and Clustering Algorithm
- Experimental Results
- Conclusion

UNSUPERVISED FEATURE SELECTION

Selecting the relevant features

- The feature X is relevant to the partitioning, while the feature Y is irrelevant.
- Our Claim: A feature is less relevant if, along this feature, the variance of observations in a cluster is closer to the global variance of observations in all clusters.

We propose a quantitative index to measure the relevance of each feature:

$$SCORE_{l} = \frac{1}{k} \sum_{j=1}^{k} Score_{l,j} = \frac{1}{k} \sum_{j=1}^{k} (1 - \frac{\delta_{l,j}^{2}}{\delta_{l}^{2}}), l = 1, \dots, d$$

 $\delta_{l,j}^{2}: \text{the variance of the } j^{\text{th}} \text{ cluster projected on the } l^{\text{th}} \text{ dimension (local):} \\ \delta_{l,j}^{2} = \frac{1}{N_{j} - 1} \sum_{t=1}^{N_{j}} (x_{l,t} - \mu_{l,j})^{2}, \mathbf{x}_{t} \in j^{\text{th}} \text{ cluster},$

 δ_{l}^{2} : the variance of the whole data on the lth dimension (global):

$$\delta_{l}^{2} = \frac{1}{N-1} \sum_{t=1}^{N} (x_{l,t} - \bar{\mu}_{l})^{2}, \ \bar{\mu} = \frac{1}{N} \sum_{t=1}^{N} x_{l,t}.$$

the optimal case: SCORE₁ = 1; the worst case: SCORE₁ = 0.

the refined relevant feature subset:

$$R' = F - \{ F_l \mid S C O R E_l < \beta, F_l \in F \}$$

- Selecting the non-redundant features
- Markov Blanket (Pearl): Given a feature F_1 , let $M_1 \subset F(F_1 \notin M_1)$ M_1 is said to be the Markov Blanket for F_1 if:

$$P(F - M_{l} - F_{l}, C | F_{l}, M_{l}) = P(F - M_{l} - F_{l}, C | M_{l}).$$

- If a Markov Blanket M₁ for F₁ can be found in the feature set F, i.e. M₁ subsumes the information that F₁ has about C, we are able to eliminate the feature F₁ from F without affecting the class prediction accuracy.
- The closeness of candidate M_i to being a true Markov Blanket for F_i is measured by (Koller&Sahami):

$$\Delta(F_{l} \mid M_{l}) \sum_{f_{M_{l}}, f_{l}} P(M_{l} = f_{M_{l}}, F_{l} = f_{l}) \cdot KL(P(C \mid M_{l} = f_{M_{l}}, F_{l} = f_{l}) \parallel P(C \mid M_{l} = f_{M_{l}}))$$

• where *KL*(.||.) denotes the Kullback-Leibler divergence:

$$KL(P \parallel Q) = \sum_{z} P(z) \log(P(z) / Q(z)).$$

- **Exact Markov Blanket for** $F_l:\Delta(F_l|M_l)=0$;
- Approximate Markov Blanket for $F_l:\Delta(F_l|M_l)$ being small.

Algorithm 1: The Markov Blanket filtering algorithm.

Initialize

$$-G^{(1)} = F;$$

Iterate

- For each feature F_l ∈ G^(m) let M_l be the set of T features F_i ∈ G^(m) − F_l for which the correlation between F_l and F_i are the highest;
- Compute $\Delta(F_l|M_l)$ for each feature l;
- Choose the F_{l_m} that minimizes $\Delta(F_l|M_l)$, and define $G^{(m+1)} = G^{(m)} F_{l_m}$;

Until $|G^{(m+1)}| = T$.

non-redundant features (classes are replaced by clusters):

 $R'' = \{F_{l_m} \mid \min_{F_l \in G^{(m)}} \Delta(F_l \mid M_l) > \gamma \cdot \min_{F_l \in G^{(1)}} \Delta(F_l \mid M_l)\} \bigcup \{R' - \{F_{l_1}, F_{l_2}, \dots, F_{l_{|R|-T}}\}\}$ where $m = 1, 2, \dots, |R'| - T, F_{l_m} \in R', G^{(1)} = R'.$

OUTLINE

- Introduction $\sqrt{}$

- The existing unsupervised feature selection methods
- The RPEM Algorithm $\sqrt{}$
- Unsupervised Feature Selection Schemes $\sqrt{}$
- The Iterative Feature Selection and Clustering Algorithm 4
- Experimental Results
- Conclusion

THE ITERATIVE FEATURE SELECTION AND CLUSTERING ALGORITHM

Algorithm 2: Iterative Feature Selection in RPEM clustering algorithm. input : $\mathbf{X}_N, k_{max}, \eta, epoch_{max}, \beta, \gamma, T$ output: the most relevant and non-redundant feature subset \hat{R} 1 $\hat{R} \leftarrow \{F\};$ 2 epoch_count $\leftarrow 0$; 3 while $epoch_count \le epoch_{max} do$ for $t \leftarrow 1$ to N do Step 1: Calculate $h(j|\mathbf{x}_t, \hat{\Theta})$'s to obtain $q(j|\mathbf{x}_t, \hat{\Theta})$'s on 5 \hat{R} : Step 2: Update parameters $\hat{\Theta}$ on F; 6 $\hat{\Theta}^{(new)} = \hat{\Theta}^{(old)} + \eta \left. \frac{\partial \mathcal{M}(\mathbf{x}_t; \hat{\Theta})}{\partial \Theta} \right|_{\hat{\Theta}^{(old)}};$ 7 end $\bar{R} \leftarrow \text{FeatureSelection}(F, \beta, \gamma, T);$ $epoch_count \leftarrow epoch_count + 1;$ 9 10 end

 $\begin{array}{l} \textbf{Procedure FeatureSelection} (F, \beta, \gamma, T) \\ \textbf{input} : F, \beta, \gamma, T \\ \textbf{output} : \hat{R} \\ \hline // \text{ Selecting the relevant features} \\ \textbf{1} \ Calculate \ SCORE_l, F_l \in F; \\ \textbf{2} \ R' \leftarrow F - \{F_l|SCORE_l < \beta, F_l \in F\}; \\ \hline // \ Selecting \ \text{the non-redundant features} \\ \textbf{3} \ Perform \ Markov \ Blanket \ filtering; \\ \textbf{4} \ R'' = \{F_{l_m} | \min_{F_l \in G^{(m)}} \Delta(F_l | M_l) > \\ \gamma \cdot \min_{F_l \in G^{(1)}} \Delta(F_l | M_l)\} \cup \{R' - \{F_{l_1}, F_{l_2}, \dots, F_{l_{|R'|-T}}\}\}; \\ \textbf{5} \ \hat{R} \leftarrow R''; \end{array}$

OUTLINE

- Introduction $\sqrt{}$

- The existing unsupervised feature selection methods
- The RPEM Algorithm $\sqrt{}$
- Unsupervised Feature Selection Schemes $\sqrt{}$
- The Iterative Feature Selection and Clustering Algorithm $~\sqrt{}$
- Experimental Results
- Conclusion

EXPERIMENTAL RESULTS

The system parameters

Syl

	parameter	k _{max}	β	γ	Т
	value	10	0.4	2	2
nthet	ic data 1		6 5 4 3 2		
				3 4	5 6 7

- F₁ and F₂ are relevant features;
- F_3 ; F_4 are obtained by duplicating F_1 and F_2 ; (thus either { F_3 ; F_4 } or { F_1 ; F_2 } are redundant.)
- F₅ -F₁₀ were sampled from standard Gaussian, thus being unimodal (irrelevant to the clustering);

	0.45 0.4 0.35 0.35 0.25 0.25 0.25 0.25 0.25 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.05 0.0	50
epoch	ranking	selected features
1	$0.9(F_1) \ 0.9(F_4) \ 0.9(F_3) \ 0.9(F_2) \ 0.3(F_6) \ 0.3(F_7) \ 0.2(F_{10}) \ 0.1(F_8) \ 0.1(F_5) \ 0.1(F_9)$	{F ₁ ; F ₂ ; F ₃ ; F ₄ }
1	$O(F_1) O(F_2)$	{F ₃ ; F ₄ }
$0.8(F_1) \ 0.8(F_2) \ 0.8(F_4) \ 0.8(F_3) \ 0.2(F_7) \ 0.2(F_8) \ 0.2(F_6) \ 0.2(F_{10}) \ 0.2(F_5) \ 0.1(F_9)$		{F ₁ ; F ₂ ; F ₃ ; F ₄ }
$0(F_1) 0(F_2)$		{F ₃ ; F ₄ }
$0.9(F_2) \ 0.9(F_1) \ 0.9(F_4) \ 0.9(F_3) \ 0.0(F_7) \ 0.0(F_5) \ 0.0(F_8) \ 0.0(F_9) \ 0.0(F_{10}) \ 0.0(F_6)$		{F ₁ ; F ₂ ; F ₃ ; F ₄ }
30	$O(F_1) O(F_2)$	{F ₃ ; F ₄ }
		43

- The algorithm in (Law et al. 2004) assumes that the pdf of the irrelevant features is Gaussian;
- Let be uniformly distributed (irrelevant to the clustering); The distribution of the irrelevant features is bias from the pre-specified one in (Law et al. 2004).

 Remark: The algorithm in (Law et al. 2004) is sensitive to the assumed pdf for the irrelevant features;

	0.45 0.4 0.35 0.25 0.2 0.25 0.2 0.25 0.2 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05	50
epoch	ranking	selected features
1	$0.9(F_1) \ 0.9(F_2) \ 0.9(F_3) \ 0.9(F_4) \ 0.3(F_6) \ 0.3(F_5) \ 0.2(F_9) \ 0.2(F_8) \ 0.1(F_{10}) \ 0.1(F_7)$	
$O(F_1) O(F_2)$		{F ₃ ; F ₄ }
$0.6(F_1) \ 0.6(F_4) \ 0.6(F_2) \ 0.6(F_3) \ 0.2(F_8) \ 0.1(F_6) \ 0.1(F_{10}) \ 0.1(F_7) \ 0.0(F_5) \ 0.0(F_9)$		{F ₁ ; F ₂ ; F ₃ ; F ₄ }
$O(F_1) O(F_2)$		{F ₃ ; F ₄ }
$0.9(F_1) \ 0.9(F_2) \ 0.9(F_3) \ 0.9(F_4) \ 0.0(F_{10}) \ 0.0(F_8) \ 0.0(F_9) \ 0.0(F_7) \ 0.0(F_5) \ 0.0(F_6)$		$\{F_1; F_2; F_3; F_4\}$
$O(F_1) O(F_2)$		{F ₃ ; F ₄ }
		45

IRRFS-RPEM: the proposed algorithm; IRFS-RPEM: a variant without redundancy analysis.

Data Set	Method	Model Order mean \pm std	Error Rate mean \pm std
Wdbc d=30 N=569 k* =2	RPEM GMClusFW IRFS-RPEM IRRFS-RPEM	1.7 ± 0.4 5.7 ± 0.3 2.3 ± 0.4 Fixed at 2	$\begin{array}{rrrr} 0.2610 \pm & 0.0781 \\ 0.1005 \pm & 0.0349 \\ 0.1021 \pm & 0.0546 \\ 0.0897 \pm & 0.0308 \end{array}$
Sonar d=30 N=569 k* =2	RPEM GMClusFW IRFS-RPEM IRRFS-RPEM	2.3 ± 0.8 1.0 ± 0.0 2.8 ± 0.6 2.7 ± 0.7	$\begin{array}{r} 0.4651 \pm 0.0532 \\ 0.5000 \pm 0.0000 \\ 0.3625 \pm 0.0394 \\ \textbf{0.3221} \pm \textbf{0.0333} \end{array}$
Wine d=30 N=569 k* =2	RPEM GMClusFW IRFS-RPEM IRRFS-RPEM	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 0.0843 \pm 0.0261 \\ 0.0673 \pm 0.0286 \\ 0.0492 \pm 0.0182 \\ 0.0509 \pm 0.0248 \end{array}$
lonospher d=30 N=569 k* =2	e RPEM GMClusFW IRFS-RPEM IRRFS-RPEM	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 0.4056 \pm \ 0.0121 \\ 0.2268 \ \pm \ 0.0386 \\ 0.2921 \ \pm \ 0.0453 \\ \textbf{0.2121} \ \pm \ \textbf{0.0273} \end{array}$

Data Set	Method	Model Order mean \pm std	Error Rate mean \pm std
wdbc	IRFS-RPEM IRRFS-RPEM	2.3 ± 0.4 Fixed at 2	0.1021 ± 0.0546 0.0897 ± 0.0308
sonar	IRFS-RPEM IRRFS-RPEM	2.8 ± 0.6 2.7 ± 0.7	0.3625 ± 0.0394 0.3221 ± 0.0333

Table: The proportions of the average selected features

Data	IRFS-RPEM	IRRFS-RPEM
wdbc	51.16%	50.33%
sonar	57%	55.83%

Data Set	Method	Model Order mean \pm std	Error Rate mean \pm std
wine	IRFS-RPEM	4.7 ± 1.7	0.0492 ± 0.0182
	IRRFS-RPEM	3.1 ± 0.5	0.0509 ± 0.0248
ionosphere	IRFS-RPEM	2.6 ± 0.8	0.2921 ± 0.0453
	IRRFS-RPEM	2.5 ± 0.5	0.2121 ± 0.0273

Table: The proportions of the average selected features

Data	IRFS-RPEM	IRRFS-RPEM
wine	83.65%	62.31%
ionosphere	68.13%	34.38%

Data Set	Method	Model Order mean \pm std	Error Rate mean std
wdbc	GMClusFW IRRFS-RPEM	$\frac{5.7 \pm 0.3}{\text{Fixed at 2}}$	$\begin{array}{r} 0.1005 \pm 0.0349 \\ \textbf{0.0897} \ \pm \ \textbf{0.0308} \end{array}$
sonar	GMClusFW IRRFS-RPEM	1.0 ± 0.0 2.7 ± 0.7	$\begin{array}{r} 0.5000 \ \pm \ 0.0000 \\ \textbf{0.3221} \ \pm \ \textbf{0.0333} \end{array}$
wine	GMClusFW IRRFS-RPEM	3.3 ± 1.4 3.1 ± 0.5	$\begin{array}{r} 0.0673 \ \pm \ 0.0286 \\ 0.0509 \ \pm \ 0.0248 \end{array}$
ionosphere	GMClusFW IRRFS-RPEM	3.2 ± 0.6 2.5 ± 0.5	0.2268 ± 0.0386 0.2121 ± 0.0273

CONCLUSION

- Develop RPEM algorithm from the MWL learning framework;
- A new feature relevance measurement index is proposed;
- The algorithm iterates between the clustering and feature selection, featuring that:
 - It does not particularly assume the pdf for the irrelevant features;
 - Effective in eliminating both irrelevant and redundant features;

REFERENCES:

- [Dash et al. 2002] M. Dash, K. Scheuermann, P. Liu, "Feature Selection for Clustering – A Filter Solution", Proceedings of IEEE International Conferenceon Data Mining, pp. 115-122, 2002.
- [Miltra et al. 2002] P. Miltra, C. Murthy, S. Pal, "Unsupervised Feature Selection Using Feature Similarity", IEEE Transactions on Pattern Analysis and Machinary Intelligence, 24(2), pp. 301-312, 2002.
- [Law et al. 2004] M. Law, M. Figueiredo, A. Jain, "Simultaneous Fature Selection and Clustering Using Mixture Models, IEEE Transactions on Pattern Analysis and Machinary Intelligence, 26(9), pp. 1154-1166, 2004.
- [Dy and Brodley 2000] J. Dy, C. Brodley, "Visualization and Interactive Feature Selection for Unsupervised Data", Proceedings of ACM Special Interest Group on Knowledge Discovery in Data, pp. 360-364, 2000.

- [Dy and Brodley 2005] J. Dy, C. Brodley, "Feature Selection for Unsupervised Learning", J. Machine Learning Res., 5, pp. 845-889, 2005.
- [Constantinopoulos et al. 2006] C .Constantinopoulos, M. Titsias, A. Likas, "Bayesian Feature and Model Selection for Gaussian Mixture Models", IEEE Transactions on Pattern Analysis and Machinary Intelligence, 28(6), pp. 1013-1018, 2006.